近年来,轨迹优化方法已在现实世界机器人上达到了出色的性能水平。这些方法在很大程度上依赖于动力学的准确分析模型,但是物理世界的某些方面只能在有限的程度上捕获。另一种方法是利用机器学习技术从数据中学习系统的可区分动力学模型。在这项工作中,我们使用轨迹优化和模型学习,在没有精确的动力学分析模型的情况下,使用机器人系统执行高度动态和复杂的任务。我们表明,从仅在两个不同的机器人上的25分钟相互作用的数据中收集的数据,神经网络可以准确地对高度非线性行为进行建模:(i)波士顿动力学点和(ii)RC CAR。此外,我们使用神经网络的梯度来执行基于梯度的轨迹优化。在我们的硬件实验中,我们证明了我们所学的模型可以代表现场和无线电控制(RC)汽车的复杂动力学,并与轨迹优化方法结合使用良好的性能。
translated by 谷歌翻译
We study critical systems that allocate scarce resources to satisfy basic needs, such as homeless services that provide housing. These systems often support communities disproportionately affected by systemic racial, gender, or other injustices, so it is crucial to design these systems with fairness considerations in mind. To address this problem, we propose a framework for evaluating fairness in contextual resource allocation systems that is inspired by fairness metrics in machine learning. This framework can be applied to evaluate the fairness properties of a historical policy, as well as to impose constraints in the design of new (counterfactual) allocation policies. Our work culminates with a set of incompatibility results that investigate the interplay between the different fairness metrics we propose. Notably, we demonstrate that: 1) fairness in allocation and fairness in outcomes are usually incompatible; 2) policies that prioritize based on a vulnerability score will usually result in unequal outcomes across groups, even if the score is perfectly calibrated; 3) policies using contextual information beyond what is needed to characterize baseline risk and treatment effects can be fairer in their outcomes than those using just baseline risk and treatment effects; and 4) policies using group status in addition to baseline risk and treatment effects are as fair as possible given all available information. Our framework can help guide the discussion among stakeholders in deciding which fairness metrics to impose when allocating scarce resources.
translated by 谷歌翻译
当呈现新任务时,人类可以在构图上推理。先前的研究表明,适当的提示技术使大型语言模型(LLM)能够解决人工构图概括任务,例如扫描。在这项工作中,我们在更现实的语义解析任务中确定了更大的词汇,并完善这些提示技术来解决这些挑战。我们的最佳方法是基于最小的提示:它使用基于提示的句法解析分解问题,然后使用此分解来选择适当的示例并顺序生成语义分析。这种方法使我们能够为CFQ设置新的最新技术,同时仅需要传统方法使用的培训数据的1%。由于我们的方法的一般性,我们希望类似的努力将在其他任务和领域中带来新的结果,尤其是对于知识密集型应用程序。
translated by 谷歌翻译
从图像中学习代表,健壮和歧视性信息对于有效的人重新识别(RE-ID)至关重要。在本文中,我们提出了一种基于身体和手部图像的人重新ID的端到端判别深度学习的复合方法。我们仔细设计了本地感知的全球注意力网络(Laga-Net),这是一个多分支深度网络架构,由一个用于空间注意力的分支组成,一个用于渠道注意。注意分支集中在图像的相关特征上,同时抑制了无关紧要的背景。为了克服注意力机制的弱点,与像素改组一样,我们将相对位置编码整合到空间注意模块中以捕获像素的空间位置。全球分支机构打算保留全球环境或结构信息。对于打算捕获细粒度信息的本地分支,我们进行统一的分区以水平在Conv-Layer上生成条纹。我们通过执行软分区来检索零件,而无需明确分区图像或需要外部线索,例如姿势估计。一组消融研究表明,每个组件都会有助于提高拉加网络的性能。对四个受欢迎的人体重新ID基准和两个公开可用的手数据集的广泛评估表明,我们的建议方法始终优于现有的最新方法。
translated by 谷歌翻译
叙事中的事件可以通过其参与者的基本状态理解为一致的整体。通常,这些参与者在叙述中没有明确提及,而是通过常识性或推论填写。理解叙述的模型应该能够推断出这些隐性参与者状态,以及有关这些状态对叙事的影响的原因。为了促进这一目标,我们介绍了一个新的众包参与者指出的数据集意大利面。该数据集包含有效的,可推断的参与者状态;对国家的反事实扰动;如果反事实是真实的,那么故事的变化将是必要的。我们介绍了三项基于州的推理任务,这些任务测试了一个故事何时由故事启用,修改一个反事实状态的故事,并解释给定经过修订的故事的最有可能的状态变化。我们的基准测试实验表明,尽管当今的LLM能够在某种程度上推理有关州的推理,但仍有很大的改进空间,这表明了未来研究的潜在途径。
translated by 谷歌翻译
语义场景的理解对于在各种环境中作用的移动代理至关重要。尽管语义细分已经提供了大量信息,但缺少有关单个对象以及一般场景的详细信息,但对于许多现实世界应用程序所必需。但是,分别解决多个任务是昂贵的,并且在移动平台上计算和电池能力有限,无法实时完成。在本文中,我们提出了一种有效的多任务方法,用于RGB-D场景分析〜(EMSANET),该方法同时执行语义和实例分割〜(Panoptic分割),实例方向估计和场景分类。我们表明,所有任务都可以在移动平台上实时使用单个神经网络完成,而不会降低性能 - 相比之下,各个任务能够彼此受益。为了评估我们的多任务方法,我们扩展了常见的RGB-D室内数据集NYUV2和SUNRGB-D的注释,例如分割和方向估计。据我们所知,我们是第一个为NYUV2和SUNRGB-D上的室内场景分析提供如此全面的多任务设置的结果。
translated by 谷歌翻译
本文提出了一种使用对象检测网络在汽车雷达数据上学习对象的笛卡尔速度的方法。提出的方法是在为速度生成自己的训练信号方面进行的。标签仅用于单帧,定向边界框(OBB)。不需要昂贵的笛卡尔速度或连续序列的标签。一般的想法是在不使用单帧OBB标签的情况下预先培训对象检测网络,然后利用网络的OBB预测未标记的数据进行速度训练。详细说明,使用预测的速度以及未标记框架的更新OBB之间的距离和标记框架的OBB预测之间的距离,将网络对未标记帧的OBB预测更新为标记帧的时间戳,用于生成一个自我的预测。监督速度的训练信号。检测网络体系结构由一个模块扩展,以说明多次扫描的时间关系和一个模块,以明确表示雷达的径向速度测量值。仅首次训练的两步方法使用OBB检测,然后使用训练OBB检测和速度。此外,由雷达径向速度测量产生的伪标记的预训练引导Bootstraps本文的自我监督方法。公开可用的Nuscenes数据集进行的实验表明,所提出的方法几乎达到了完全监督培训的速度估计性能,但不需要昂贵的速度标签。此外,我们优于基线方法,该方法仅使用径向速度测量作为标签。
translated by 谷歌翻译
本文介绍了新型混合体系结构,它们结合了基于网格的处理,以改善基于雷达对象检测网络的检测性能和方向估计。纯粹基于网格的检测模型在输入点云的鸟眼视图(BEV)投影上运行。这些方法通过离散的网格分辨率损失了详细信息的损失。这特别适用于雷达对象检测,其中相对粗糙的网格分辨率通常用于解释雷达点云的稀疏性。相反,基于点的模型不会受到此问题的影响,因为它们在没有离散化的情况下处理点云。但是,它们通常表现出比基于网格的方法更差的检测性能。我们表明,基于点的模型可以在网格渲染之前提取邻域功能,利用点的确切相对位置。这对于随后的基于网格的卷积检测主链具有重大好处。在公共Nuscenes数据集的实验中,我们的混合体系结构在检测性能方面取得了改进(汽车类的地图比次要的雷达范围提交比仅限雷达提交的地图高19.7%)和方向估计值(11.5%的相对方向改善)比以前文献的网络相比。
translated by 谷歌翻译
粗粒(CG)分子模拟已成为研究全原子模拟无法访问的时间和长度尺度上分子过程的标准工具。参数化CG力场以匹配全原子模拟,主要依赖于力匹配或相对熵最小化,这些熵最小化分别需要来自具有全原子或CG分辨率的昂贵模拟中的许多样本。在这里,我们提出了流量匹配,这是一种针对CG力场的新训练方法,它通过利用正常流量(一种生成的深度学习方法)来结合两种方法的优势。流量匹配首先训练标准化流程以表示CG概率密度,这等同于最小化相对熵而无需迭代CG模拟。随后,该流量根据学习分布生成样品和力,以通过力匹配来训练所需的CG能量模型。即使不需要全部原子模拟的力,流程匹配就数据效率的数量级优于经典力匹配,并产生CG模型,可以捕获小蛋白质的折叠和展开过渡。
translated by 谷歌翻译
现实世界中的时间序列数据集经常违反预测的标准监督学习的假设 - 它们的分布会随着时间的推移而发展,从而使传统的培训和模型选择程序均优化。在本文中,我们提出了一种新颖的方法,即自适应预测(SAF),以修改时间序列预测模型的培训,以通过此类非平稳时间序列数据提高其在预测任务上的性能。 SAF在基于“背景”的预测之前集成了自适应阶段,即在时间后退预测掩盖的输入。这是一种测试时间培训的形式,在执行预测任务之前,在测试样本上会在测试样本上创建一个自我监督的学习问题。通过这种方式,我们的方法可以有效地适应编码表示的分布,从而导致卓越的概括。 SAF可以与任何基于经典的编码器码头架构架构(例如经常性神经网络或基于注意力的体系结构)集成。关于众所周知,众所周知的非统计数据(例如医疗保健和金融)的域中的合成和现实数据集,我们证明了SAF在提高预测准确性方面具有重大好处。
translated by 谷歌翻译